
The State of
Performance

Falko Menge

@falko_menge

■ 15 years at Camunda
■ #team-pre-sales-emea-apac
■ Proving to prospects that Camunda is the solution
■ Representing Camunda in Open Standards, e.g.

BPMN 2.0, DMN 1.6, …

github.com/falko

twitter.com/falko_menge

linkedin.com/in/falko-menge

Falko Menge
Senior Principal Solution Architect

Open Standards Ambassador

https://github.com/falko
https://twitter.com/falko_menge
https://www.linkedin.com/in/falko-menge

Align business
and IT with

BPMN and DMN

Tame process
complexity with

advanced
workflow
patterns

Automate
reliably at scale

with a cloud
native, flexible

architecture

What you need for

true End-to-End

Process Orchestration

#
#
#

Scalability
(horizontally to

support any use case)

Performance
(fast process

execution with low
latency)

Resilience
(even real time

datacenter failover)

Incredibly
difficult to
achieve in
combination

Stateful, long-running process orchestration

High-Performance Use Cases

■ Instant payments (Echtzeitüberweisungen)
■ Stock trade matching & settlement
■ End-of-day asset balance
■ Merchant payment batch clearing
■ Insurance compliance checks
■ Pre-paid mobile order rallies after ad campaigns
■ End-of-month/year bulk orders of network equipment

Typical Questions from Customers

■ Can you handle X million transactions per day?
=> Default answer: Yes, it’s horizontally scalable. Let’s talk!

■ Can you prove it?
=> Existing benchmark data?
=> Performance tests in a Proof of Concept (PoC) workshop

■ How much hardware do I need?
=> Sizing based on performance tests

■ Throughput
■ Number of process instances completed per second (PI/s)

■ Process size
■ Number of tasks in the BPMN process model (tasks/PI)

■ Process latency (cycle time/process instance duration)
■ Time to execute process instance from start to end (ms)

■ Inter-region network latency
■ Traveling time of network packets between geographically distant regions (ms)

Key Process Performance Metrics

10,000 8 tasks 500 ms active-passive
east-west 60ms

500 3 tasks + 2 messages
+ 2 call activities 1,000 ms active-active

10ms avg / 35ms max

2,400 10 tasks 1,200 ms active-passive
52ms one way

1,700 10 tasks 120,000 ms active-active-passive
2x east coast + 1x central

800 8 tasks 200 ms active-passive
62ms

3,000 3 tasks 300 ms single-region
replication factor = 1

Throughput (PI/s) Multi-Region SetupProcess size (#tasks) 99% Latency (ms)

Workload Characteristics of Customers

Why is Camunda 8 fast?

Tasklist

OperateStreaming
Exporter

Read-optimized

Broker

Broker

Broker

Write-optimized

gR
P

C
 G

at
ew

ay

Broker

Broker

Broker

gR
PC

 G
at

ew
ay

Optimize

Zeebe Cluster

Event Bus / Messaging System

Connector
(Http, …)

Workflow Clients

Microservices /
Apps

Automation Apps

Command Query Responsibility Segregation (CQRS)

Client

Broker (Partition Leader)

Stream
Processor

Local
State

Zeebe Partition (Follower)
Zeebe Partition (Follower)

Broker (Partition Follower)

1

3

4
5

2

1 Send & Append
Command

2 Replicate & Commit
Command

3 Validate & Process Command

4 Apply to State & Write Event 5 Send Response

Process Execution interpreted as Stream Processing

Example:

- 5 Brokers
- 5 Partitions
- Replication factor 3

- L = Leader
- F = Follower

Broker 0:
Partition 1 F
Partition 4 F
Partition 5 L

Broker 1:
Partition 1 L
Partition 2 F
Partition 5 F

Broker 2:
Partition 1 F
Partition 2 L
Partition 3 F

Broker 4:
Partition 3 F
Partition 4 L
Partition 5 F

Broker 3:
Partition 2 F
Partition 3 L
Partition 4 F

Partitions (Shards) and Replication using Raft

Region 1

Zone 1

Region 2

high-latency
connection

replication factor 3 => quorum 2 => commits stay local

Gateway 0

Zone 2

Broker 0

Broker 1

Zone 3

Broker 2

Dual-region active-passive

Region 1

Zone 1

Region 2

replication factor 4 => quorum 3 => commits must go cross-region

Gateway 0

Zone 2

Broker 1

Zone 4

Broker 3

Zone 3

Broker 2Broker 0

Dual-region active-active

high-latency
connection

Benchmarking
a Process Engine

Prometheus
Metrics

Load Generator

Camunda 8
Benchmark

Broker

Broker

Broker

Zeebe Cluster

gR
P

C
 G

at
ew

ay

Broker

Broker

Broker

G
at

ew
ay

Kubernetes Cluster

Benchmark Setup – Don’t try this at home*

Camunda
Platform

Helm Chart

helm.camunda.io*but on a proper server environment, i.e. neither your laptop nor a SaaS trial cluster

https://helm.camunda.io/

Zeebe Grafana Dashboard

docs.camunda.io/docs/next/self-managed/zeebe-deployment/operations/metrics/

https://docs.camunda.io/docs/next/self-managed/zeebe-deployment/operations/metrics/

github.com/camunda-community-hub/camunda-8-benchmark

■ Java-based load generator for Zeebe

■ Simulates the gRPC workload of clients

■ Starts thousands of process instances at fixed/increasing rate
■ Overcomes Java scheduler limitations

■ Completes tens of thousands of jobs
■ Configurable delay & payload

■ Implemented as asynchronous/reactive as possible, i.e. no blocking

of threads => Follows our best practices for writing good workers

Load Generator: Camunda 8 Benchmark

https://github.com/camunda-community-hub/camunda-8-benchmark
https://docs.camunda.io/docs/next/components/best-practices/development/writing-good-workers/

Zeebe Benchmark Template

Prometheus
Metrics

Load Generator

Camunda 8
Benchmark

Broker

Broker

Broker

Zeebe Cluster

gR
P

C
 G

at
ew

ay

Broker

Broker

Broker

G
at

ew
ay

Kubernetes Cluster

Iterative Benchmark Setup with Zeebe Tuner

Camunda 8
Helm

Profiles

Camunda
Platform

Helm Chart

Zeebe
Tuner

github.com/camunda-community-hub/camunda-8-helm-profiles

https://github.com/camunda-community-hub/camunda-8-helm-profiles

■ Zeebe Tuner project (Spring Boot)

■ Programmatically reads Benchmark Template Spreadsheet

■ Creates directory + scripts to run each test

■ Tests can be shared and re-run

■ One Bash script to run multiple tests in sequence

■ Saves url to easily view results

■ Able to run tests unattended

■ Results can be viewed as Grafana Chart and analyzed

github.com/camunda-consulting/zeebe-tuner

Zeebe Tuner (parameterized Kubernetes tests)

https://github.com/camunda-consulting/zeebe-tuner

Input: Zeebe Configurations Output: Performance Metrics

Zeebe Tuner for iterative Performance Tests

■ Exploratory tests: starting from a baseline
change one parameter at a time to find new
directions

■ Navigating the terrain: iterate through
various values within a parameter’s value
range to find local optimum, then iterate
over other parameters to find global
optimum

Test Strategies

■ First test with “unlimited” hardware, e.g. reserve more CPUs and memory

than the brokers could possibly use

■ That reduces the number benchmark parameters to iterate over

■ Find optimal number of partitions per broker and other parameters

■ Then measure CPU and memory consumption and reduce hardware limits

to optimize costs

■ Also long-running tests to check stability should be done later

Optimize Performance First, Hardware Cost Second

■ A change in the code may invalidate prior optimization results, e.g.

■ Number of workers

■ Number of job types

■ Parameters are interrelated, i.e. changing one requires changing others, e.g.

■ Number of partitions & brokers

■ vCPUs & thread pool sizes

=> Optimization is an ongoing process

Performance engineering is a process

Benchmark Results

Target: 500 PI/s

Configuration Tuning Engine Hacking

Throughput (PI/s)

Target: 1500 msg/s

Message Throughput & Backpressure

Configuration Tuning Engine Hacking

Target
99%
< 1s

Process Instance Duration (Latency)

Configuration Tuning Engine Hacking

Job Streaming: PI Duration -56%

Job Streaming: CPU Usage -50%

Job Streaming: PI Duration -56%

Job Streaming: CPU Usage -50%

Predictable Scalability

GCP N2D (3rd Generation AMD)

GCP N2D vs C3D (3rd & 4th gen AMD)

Price Performance for Zeebe Brokers

■ Job Streaming

■ Priority Election

■ Always enforce Leader Balancing

■ Scale partitions & brokers

■ Latest generation CPUs

■ Fastest possible disks & file systems, e.g. XFS

■ Enable RocksDB SST file Partitioning for large state

■ Raft flush delay time (takes disk out of critical path)

■ Multi-region: prefer local brokers by selecting correlation key

Current Tuning Best Practices

https://docs.camunda.io/docs/next/components/concepts/job-workers/#job-streaming
https://docs.camunda.io/docs/next/self-managed/zeebe-deployment/configuration/priority-election/
https://docs.camunda.io/docs/self-managed/zeebe-deployment/operations/rebalancing/
https://rocksdb.org/blog/2017/05/12/partitioned-index-filter.html
https://docs.camunda.io/docs/next/self-managed/zeebe-deployment/configuration/broker-config/#zeebebrokerclusterflush

Key Takeaway

 Yes, it’s horizontally scalable.
Let’s talk!

Resources

Bernd Ruecker’s Blog Articles

GitHub

Camunda Platform 8 Docs

Contact Us

Try Camunda Platform 8 for free

■ How to Benchmark Your Camunda 8 Cluster
■ How to Achieve Geo-redundancy with Zeebe

■ camunda-consulting/zeebe-tuner
■ camunda-community-hub/camunda-8-benchmark

■ Metrics
■ Deployment options

■ Contact Form
■ mailto:info@camunda.com

https://accounts.cloud.camunda.io/signup?_ga=2.191092010.16973380.1676645119-661839599.1676645119&uc=signup
https://blog.bernd-ruecker.com/how-to-benchmark-your-camunda-8-cluster-48ada4b047b6
https://blog.bernd-ruecker.com/how-to-achieve-geo-redundancy-with-zeebe-b4465fe56ed3
https://github.com/camunda-consulting/zeebe-tuner
https://github.com/camunda-community-hub/camunda-8-benchmark
https://docs.camunda.io/docs/next/self-managed/zeebe-deployment/operations/metrics/
https://docs.camunda.io/docs/next/self-managed/platform-deployment/overview/#deployment-options
https://camunda.com/contact/
mailto:info@camunda.com

Thank You

fm@camunda.com

linkedin.com/in/falko-menge

github.com/falko

mailto:fm@camunda.com
http://linkedin.com/in/falko-menge
http://github.com/falko

